If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+19x-20=0
a = 16; b = 19; c = -20;
Δ = b2-4ac
Δ = 192-4·16·(-20)
Δ = 1641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{1641}}{2*16}=\frac{-19-\sqrt{1641}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{1641}}{2*16}=\frac{-19+\sqrt{1641}}{32} $
| a2-3a-28=0 | | |4x+5|=|−29+-4x| | | 7x-9=12x-36 | | -3x+2-5x−7=4x+2 | | n2+8n+7=0 | | 12.9x-70*125=233*70 | | x-70=74+7x | | 2/9z=18 | | 10x+45=255 | | 13w-16=-81 | | 18(1.09x)=13(1.07x) | | 4n-7=0 | | r2-3r-28=0 | | 16v–10v=18 | | 5x+5=10x-30 | | 2x-6=63+5x | | 15q=6q-90 | | 3.8x-(-1-9.7x)= | | (3x+2)+x=134 | | 3z=2z–7 | | 2(x+6)-2=45-5x | | 3x-8=5x-44 | | 12^2-18x=0 | | 3×(x+1)+x=15 | | 1/2x+4=3 | | 30-4.x=18 | | y/10.24=8 | | -15.1y–13.77+7y=-7.4y–1.8 | | 146.85=(x+8.60+3.90) | | (x+12)+7x-2=180 | | -17x-1+-10x+17=-32x+1 | | 0=3x^2-24x+22 |